Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiol Cardiothorac Imaging ; 6(2): e230172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573128

RESUMO

Purpose To perform a qualitative and quantitative evaluation of the novel image-navigated (iNAV) 3D late gadolinium enhancement (LGE) cardiac MRI imaging strategy in comparison with the conventional diaphragm-navigated (dNAV) 3D LGE cardiac MRI strategy for the assessment of left atrial fibrosis in atrial fibrillation (AF). Materials and Methods In this prospective study conducted between April and September 2022, 26 consecutive participants with AF (mean age, 61 ± 11 years; 19 male) underwent both iNAV and dNAV 3D LGE cardiac MRI, with equivalent spatial resolution and timing in the cardiac cycle. Participants were randomized in the acquisition order of iNAV and dNAV. Both, iNAV-LGE and dNAV-LGE images were analyzed qualitatively using a 5-point Likert scale and quantitatively (percentage of atrial fibrosis using image intensity ratio threshold 1.2), including testing for overlap in atrial fibrosis areas by calculating Dice score. Results Acquisition time of iNAV was significantly lower compared with dNAV (4.9 ± 1.1 minutes versus 12 ± 4 minutes, P < .001, respectively). There was no evidence of a difference in image quality for all prespecified criteria between iNAV and dNAV, although dNAV was the preferred image strategy in two-thirds of cases (17/26, 65%). Quantitative assessment demonstrated that mean fibrosis scores were lower for iNAV compared with dNAV (12 ± 8% versus 20 ± 12%, P < .001). Spatial correspondence between the atrial fibrosis maps was modest (Dice similarity coefficient, 0.43 ± 0.15). Conclusion iNAV-LGE acquisition in individuals with AF was more than twice as fast as dNAV acquisition but resulted in a lower atrial fibrosis score. The differences between these two strategies might impact clinical interpretation. ©RSNA, 2024.


Assuntos
Fibrilação Atrial , Diafragma , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Fibrilação Atrial/diagnóstico , Meios de Contraste , Gadolínio , Átrios do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Feminino
3.
Front Physiol ; 11: 1145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041850

RESUMO

Catheter ablation therapy for persistent atrial fibrillation (AF) typically includes pulmonary vein isolation (PVI) and may include additional ablation lesions that target patient-specific anatomical, electrical, or structural features. Clinical centers employ different ablation strategies, which use imaging data together with electroanatomic mapping data, depending on data availability. The aim of this study was to compare ablation techniques across a virtual cohort of AF patients. We constructed 20 paroxysmal and 30 persistent AF patient-specific left atrial (LA) bilayer models incorporating fibrotic remodeling from late-gadolinium enhancement (LGE) MRI scans. AF was simulated and post-processed using phase mapping to determine electrical driver locations over 15 s. Six different ablation approaches were tested: (i) PVI alone, modeled as wide-area encirclement of the pulmonary veins; PVI together with: (ii) roof and inferior lines to model posterior wall box isolation; (iii) isolating the largest fibrotic area (identified by LGE-MRI); (iv) isolating all fibrotic areas; (v) isolating the largest driver hotspot region [identified as high simulated phase singularity (PS) density]; and (vi) isolating all driver hotspot regions. Ablation efficacy was assessed to predict optimal ablation therapies for individual patients. We subsequently trained a random forest classifier to predict ablation response using (a) imaging metrics alone, (b) imaging and electrical metrics, or (c) imaging, electrical, and ablation lesion metrics. The optimal ablation approach resulting in termination, or if not possible atrial tachycardia (AT), varied among the virtual patient cohort: (i) 20% PVI alone, (ii) 6% box ablation, (iii) 2% largest fibrosis area, (iv) 4% all fibrosis areas, (v) 2% largest driver hotspot, and (vi) 46% all driver hotspots. Around 20% of cases remained in AF for all ablation strategies. The addition of patient-specific and ablation pattern specific lesion metrics to the trained random forest classifier improved predictive capability from an accuracy of 0.73 to 0.83. The trained classifier results demonstrate that the surface areas of pre-ablation driver regions and of fibrotic tissue not isolated by the proposed ablation strategy are both important for predicting ablation outcome. Overall, our study demonstrates the need to select the optimal ablation strategy for each patient. It suggests that both patient-specific fibrosis properties and driver locations are important for planning ablation approaches, and the distribution of lesions is important for predicting an acute response.

4.
R Soc Open Sci ; 7(8): 200585, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968521

RESUMO

The potential for acute shortages of ventilators at the peak of the COVID-19 pandemic has raised the possibility of needing to support two patients from a single ventilator. To provide a system for understanding and prototyping designs, we have developed a mathematical model of two patients supported by a mechanical ventilator. We propose a standard set-up where we simulate the introduction of T-splitters to supply air to two patients and a modified set-up where we introduce a variable resistance in each inhalation pathway and one-way valves in each exhalation pathway. Using the standard set-up, we demonstrate that ventilating two patients with mismatched lung compliances from a single ventilator will lead to clinically significant reductions in tidal volume in the patient with the lowest respiratory compliance. Using the modified set-up, we demonstrate that it could be possible to achieve the same tidal volumes in two patients with mismatched lung compliances, and we show that the tidal volume of one patient can be manipulated independently of the other. The results indicate that, with appropriate modifications, two patients could be supported from a single ventilator with independent control of tidal volumes.

5.
Nat Methods ; 14(12): 1141-1152, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083403

RESUMO

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Interpretação de Imagem Assistida por Computador , Benchmarking , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA